
Changes to the MIPP offline fluka and e907mc

packages

Holger Meyer (WSU)

April 4, 2011

Abstract

Changes to several MIPP offline analysis packages[1] are described.
These are fluka, e907mc, E907MCInterface. All modifications are fully
backwards compatible.

1 Background and problem description

The simulation tool chain in MIPP data analysis consists of event gener-
ation (resulting in a stdhep file), tracking of events through the detector
geometry in e907mc which is based on Geant3 (resulting in root data files
with MC-truth and hit information) and digitization and reconstruction
in an anamipp job using the offline framework (resulting in root data files
with digits and tracks added and in root dst files). Event generation is
done mainly with fluka and dpmjet. With dpmjet a primary interaction is
generated and primary particles are written to the stdhep file. With fluka
the primary interaction is tracked in fluka through the experimental target
volume and tracks are written to the stdhep file as they cross the target
volume boundary. The advantage is that all of fluka’s physics models for
interactions are taken into account inside the target. A disadvantage is
that information on primary vertex position and multiplicity used to not
be available in the later stages as it was not stored in the stdhep files. This
hindered among other things the study of KNO scaling behavior in MIPP
data. The modifications to fluka now write out the complete event tree
of interactions so that the history of particles crossing the target volume
boundary is available.

It is also desirable to retain the information on what kind of interaction
(elastic, inelastic, ...) created the particles in the event. This information
is accessible in fluka and is preserved with the modifications presented
here.

2 Problem solution overview

It was decided[2] to add the vertex information from fluka to the stdhep
files while retaining the particles tracked by fluka through the target. In

1

e907mc the particles from the target volume boundary crossing will be
tracked as before (and output placed in folders “kine” and “hits” in the
output root file) while additional information on the history of particles
inside the target is ignored during tracking in geant. The primary ver-
tex particles that decay inside the target are ignored and simply passed
through into the output file into the “kine” folder. Care is taken to cor-
rectly assign all particles to the correct vertices.

If vertex information is not available (as in the case of stdhep files
before the modifications described here or for stdhep files from dpmjet),
then e907mc behaves fully backwards compatible. Even if the old e907mc
encounters an stdhep file prduced by the new fluka (a highly unusual,
unnecessary use-case), despite the limitations in the stdhep file format,
the new information in the stdhep files will be ignored because the old
hep2geant routine skips over particels with stdhep status flags other than
1 or the MIPP beam status flag (usually 301) as they are considered to
be decayed particles.

In the further offline analysis the changes are also completely transpar-
ent. No geant hits are generated from the particle tracks fully contained
inside the target and thus there will not be any changes in the reconstruc-
tion.

Fluka has been modified to write out the vertex particle information.
The input file must specify a USERDUMP card in the fluka input file to
activate this. The previously used USERWEIG card should be removed
to avoid duplicate output.

In the process of this update some other bugs have been identified
and fixed. These include the assignment of kinetic energy thresholds for
electrons and photons in the .inp files to drive fluka. Thresholds have
been set to coincide between fluka and e907mc.

3 Problem solution details

3.1 fluka

Limits of stdhep files. Use status flag to encode particle number. The
STDHEP manual[3] defines the ISTHEP integer as follows:

ISTHEP value - definition

0 - null
1 - final state particle
2 - intermediate state
3 - documentation line
4-10 - reserved for future use
11-200 - reserved for specific model use
201-... - reserved for users

To this was added before the MIPP convention:

ISTHEP value - definition

301 - beam particle to be tracked backwards
(depreciated, for backwards compatibility only)

2

This code is now depreciated, but retained for backwards compatibility.
Now the following codes are used. Particles from the stdhep file with

these codes must not be tracked in e907mc.

ISTHEP value - definition

350 - particle produced at primary interaction if it
does not cross the target volume boundary

351 - particle produced at secondary interaction if it
does not cross the target volume boundary

... - ...
387 - parcticle produced in thirty seventh or higher

level of interaction if it does not cross target volume boundary
389 - particle produced below threshold set in fluka

beam particle, event primary interaction is....
(see fluka manual p.361, USDRAW entry to
MGDRAW routine)

399 - no event, uninteracted beam particle
40x - interaction in fluka subroutine KASKAD

(hadron and muon interactions)
400 - elastic interaction
401 - inelastic interaction
402 - particle decay
403 - delta ray generation
404 - pair production
405 - bremsstrahlung
410 - radioactive decay
50x - interaction in fluka subroutine EMFSCO

(electron, positron and photon interactions)
508 - bremsstrahlung
510 - Mller scattering
512 - Bhabha scattering
514 - in-flight annihilation
515 - annihilation at rest
517 - pair production
519 - Compton scattering
521 - photoelectric interaction
525 - Rayleigh scattering interaction
60x - interaction in fluka subroutine KASNEU

(low-energy neutron interactions)
600 - neutron interaction
70x - interaction in fluka subroutine KASHEA

(heavy ion interactions)
700 - delta ray generation

Some of these codes could be argued to duplicate definitions provided
in the standard. For example ISTHEP code 2 might be used for those
primary particles that are decayed or interacted by fluka. However, it was
deemed a cleaner implementation to consistently use codes in the range
reserved for users. Of the ISTHEP codes for beam particles encoding

3

the type of interaction only codes 399, 400, and 401 are expected to be
used in MIPP. However, the other codes are defined here because fluka
can issue these codes. They are the codes defined on page 361 of the
fluka manual[4] with an offset of 300 added because the lower codes would
otherwise conflict with other STDHEP ISTHEP codes.

Here is a flow example of how an event might get generated with
particular attention to the call to user routines and their order. All the
xxDRAW routines are actually separate entry points to the MGDRAW
routine and the code resides in mgdraw.f:

1. Fluka starts the event. The routine SODRAW is called and puts
the beam particle on the stdhep particle stack with ISTHEP code
ISTHEPNOINT (399).

2. If there is no interaction then BXDRAW is called as the beam parti-
cle leaves the target volume and it is added to the stdhep stack with
ISTHEP code ISTHEPTRACK (1). – OR – UGDRAW is called
on the primary interaction. The ISTHEP flag and vertex position
of the beam particle (which is already on the stdhep stack from
the call to SODRAW) are updated with the position and type of
interaction. Also all the produced particles are put onto the fluka
stack with isthep code ISTHEPPRIMARY (350) and vertex position
that is irrelevant as it will be updated when the particles interact or
leave the target volume. If a produced particle is below threshold
it will not be tracked by fluka. These particles are nonetheless put
in the stdhep output with the vertex position of their origin and is-
thep code ISTHEPBELOWTHRESHOLD (389). JMOHEP indices
of the produced particles and JDAHEP indices of the beam particle
are set with the correct values.

3. The first particle of the interaction is tracked in fluka. (Actually
it may be called the last particle as the fluka particle stack is pro-
cessed in a FILO order as would be expected for a stack buffer.)
Either it hits the target boundary. Then, in a call to BXDRAW,
its vertex position is set to the target boundary crossing position
and the ISTHEP value is set to ISTHEPTRACK. Or it undergoes
an interaction or decay within the target volume. Then, in a call to
UGDRAW, its vertex position is updated with the final point on the
track (decay or interaction position) and all daughters are placed
on the stdhep stack and JDAHEP for the mother and JMOHEP for
the daughters are set. The fluka commons FLKSTK and GENSTK
contain information on primaries and generated particles.

4. Other particles are processed in a similar manner until all particles
have crossed out of the target volume.

5. The entry ENDRAW to the MGDRAW routine is called at the end of
the event. This correctly sets the generation (primary, secondary,...)
for particles that are fully contained inside the target. Also some
consistency checks are performed and problems reported to stdout.

The interaction multiplicity for the event can now be determined from
the stdhep data by the number of daughters of the beam particle: mul-
tiplicity = jdahep(2,1) - (jdahep(1,1) + 1 = jdahep(2,1) - 1 because the

4

first daughter particle of the beam track will always be stored with index
2. The beam track itself is stored first and has index 1.

3.2 e907mc

The e907mc program structure as relevant here is as follows: For each
event the routine hep2gean3 is called to get the stdhep particles copied
into the Geant3 data structures. Then Geant3 routines track all the par-
ticles in Geant3 common blocks (and add secondary particles and hits).
Finally the routines in the E907MCInterface package (MCIDoKine and
MCIStoreHits) copy the information to the root data structures used in
the MIPP offline software. Thus, in order to add the vertex particle infor-
mation to the root output file without tracking these particles in Geant3,
they will get handed to the E907MCInterface directly from hep2gean3
and never get put into common blocks or other data structures used by
Geant3. The hep2gean3 routine has been modified in the past by MIPP
to allow for the inverse beam flag and distribution of vertex positions
throughout the target volume (for stdhep files from dpmjet).

3.3 E907MCInterface

- output into root file

3.4 DST

As we want this new information to be available in the DSTs the MIPPEventSum-
mary and DSTMaker have been modified....

References

[1] For general information on MIPP and MIPP data analysis see http:
//www-mipp.fnal.gov/ and documents linked there.

[2] The decision was based on discussion at weekly MIPP phone meet-
ings. See H. Meyer, “Vertex information in stdhep files from fluka”,
MIPP-Doc-1062-v2

[3] Lynn Garren, “StdHep 5.06.01 Monte Carlo Standardiza-
tion at FNAL Fortran and C Implementation” (20 Novem-
ber 2006), FNAL-CD-Doc-903-v15, page 5, available at
http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=

903&version=15&filename=stdhep_50601_manual.pdf

[4] Alfredo Ferrari, Paola R. Sala, Alberto Fassò, Johannes Ranft,
“Fluka: a multi-particle transport code (Program version 2008)”,
available at http://www.fluka.org/content/manuals/FM.pdf

5

